Object-Relational DBMS

CHAPTER THREE

OBJECT-RELATIONAL DBMS

3.1 Overview

This chapter discusses some concepts related to the object-relational database system such as object identity, row types, user-defined types (UDTs), user-defined routines, polymorphism, subtypes and supertypes, persistent stored modules, and large objects, also the end of this chapter there exist comparison between ORDBMS and OODBMS.
3.2 Introduction to Object-Relational Database System

Until recently, the choice of DBMS seemed to be between the relational DBMS and the object-oriented DBMS. However, vendors of RDBMS products are still conscious of the threat and promise of the OODBMS. They agree that their systems are not currently suited to the advanced applications, and that added functionality is required. However, they reject the claim that extended RDMSs will not provide sufficient functionality or will be too slow to cope adequately with the new complexity.

The examining of the advanced database applications that are emerging, due to find extensive use of many object-oriented features such as a user-extensible type system, encapsulation, inheritance, polymorphism, dynamic binding of method, complex objects including non-first normal form objects, and object identity. The most obvious way to remedy the shortcomings of the relational model is to extend the model with these types of features. This is the approach that has been taken by many prototype extended relational systems, although each has implemented different combinations of features. Thus, there is no single extended relational model; rather, there are a variety of these models. However all the models do share the same basic relational tables and query language, all incorporate some concept of 'object', and some have the ability to store methods (or procedures or triggers) as well as data in the database.

Various terms have been used for systems that have extended the relational data model. The original term that was used to describe such systems was the extended relational DBMS (ERDBMS). However, in recent years the more descriptive term Object-Relational DBMS has been used to indicate that the system incorporates some notion of 'object', and more recently the term Universal Server or Universal DBMS (UDBMS) has been used. It stands for Object-Relational DBMS (ORDBMS). Three of the leading RDBMS vendors (Oracle, Informix, and IBM) have all extended their systems to become ORDBMSs, although the functionality provided by each is slightly different. The concept of the ORDBMS, as a hybrid of the RDBMS and OODBMS, is very appealing, preserving the wealth of knowledge and experience that has been acquired with the RDBMS. Some analysts predict the ORDBMS will have a 50% larger share of the market than the RDBMS [8,15].

The main advantages of extending the relational data model come from reuse and sharing. Reuse comes from the ability to extend the DBMS server to perform standard functionality centrally, rather than have it coded in each application. For example, applications may require spatial data type that represent points, lines, and polygons, with associated functions that calculate the distance between two points, the distance between a point and a line, whether a point is contained within a polygon, and whether two polygonal regions overlap, among others. If it is possible to embed this functionality in the server, it saves having to define them in each application that needs them, and consequently allows the functionality to be shared by all applications. These advantages also give rise to increased productivity both for the developer and for the end-user.

Figure 3.1 Classification of DBMSs

Another obvious advantage is that the extended relational approach for each serves. The significant bodies of knowledge and experience have been gone into developing relational applications. This is a significant advantage, as many organizations would find it prohibitively expensive to change. If the new functionality is designed appropriately, this approach should allow organizations to take advantage of the new extensions in an evolutionary way without losing the benefits of current database features and functions. Thus, an ORDBMS could be introduced in an integrative fashion, as proof-of-concept projects. The forthcoming SQL standard is designed to be upwardly compatible with the current SQL standard, and so any ORDBMS that complies with SQL3 should provide this capability [8,15].

3.3 SQL3

The object-oriented features proposed in the next SQL standard, SQL3, covering:

· Type constructors for row types and reference type.

· User-defined types (distinct types and structured types) that can participate in supertype/subtype relationships.

· User-defined procedure, functions and operators.

· Type constructors for collection types (arrays, sets, and lists).

· Support for large objects Binary Large Objects (BLOBs) and Character Large Objects (CLOBs).

3.3.1 Object identity

Each relation has an implicitly defined attribute named OID that contains the tuple's unique identifier, where each OID value is created and maintained by postgres. The OID attributes can be accessed but not updated by user queries. Among other users, the OID can be used as a mechanism to simulate attribute types that reference tuples in other relation. The relation name can be used for the type name because relations, types, and procedures have separate name spaces [8].

3.3.2 Row types

A row type is a sequence of field name/date type pair that provides a data type that can represent the types of rows in tables, so that complete rows can be stored in variables, passed as arguments to routines and returned as return values from function calls. A row type can also be used to allow a column of a table to contain row values [1, 8].

3.3.3 User-Defined Types (UDTs)

It refers to user-defined types as Abstract Data Types (ADTs), that may be used in the same way as the built-in types (for example CHAR ,INT,FLOAT). UDTs are subdivided into two categories: distinct types and structured types. The simplest type of UDT in SQL3 is the distinct type, which allows differentiation between the same underlying base types. In its more general case, a UDT definition consists of one or more attribute definitions. It has also been proposed that a UDT definition consist additionally of routine declarations. If this proposal is not accepted, these declarations from part of the schema. In what follows, it can be assumed that UDT definition may contain routine declarations. It stands to routines and operators generically as routines. In addition, within the UDT definition it can be also define the equality and ordering relationships for the UDT.

There is still some discussion in the SQL3 drafting teams whether attributes and routines should be further protected using the tags public, private, or protected, as in C++, with the following interpretations:

· Only public components are visible to authorized users of the UDT.

· Private components are visible only within the definition of the UDT that contains them.

· Protected components are partially encapsulated, begin visible both within their own UDT and within the definitions of all subtypes of that UDT.

If no tag is specified, the last specified tag is assumed. The default for the first tag is public.The value of an attribute can be accessed using a modified dot notation [1, 8].

3.3.4 User-Defined Routines

User-defined routines (UDRs) define methods for each manipulating data and are an important adjunct to UDTs. An ORDBMS should provide significant flexibility in this area, such as allowing UDRs to return complex values that can be further manipulated (such as tables), and support for overloading of function names to simplify application development. In SQL3, UDRs may be defined as a part of a UDT or separately as part of a schema. An SQL-invoked routine may be a procedure, function, or iterative routine. It may be externally provided in a standard programming language such as C/C++, or defined completely in SQL using extensions that make the language computationally complete. An SQL-invoked procedure is invoked from an sql CALL statement. It may have zero or more parameters, each of which may be an input parameter(IN), an output parameter (OUT),or both an input and output parameter (INOUT), and it has a body if it is defined fully within SQL. An SQL-invoked function returns a value; any specified parameter [1, 2, 8].

3.3.5 Relations and inheritance

A relation inherits all attributes from its parents unless an attribute is overridden in the definition. Multiple inheritance is supported, however, if the same attribute can be inherited from more than one parent and the types of the attributes are different, the declaration is disallowed. Key specifications are also inherited [2, 8].

3.3.6 Polymorphism

Different routines may have the same name, that is routine names may be over-loaded, for example to allow aUDT subtype to redefine a method inherited from a supertype, subject to the following constraints:

· No two function in the same schema are allowed to have the same signature, that is, the same number of arguments, the same data types for each argument, and the same return datatype.

· No two procedure in the same schema are allowed to have the same name and the same number of parameters.

The current draft SQL3 proposal uses a generalized object model, so that the types of all arguments to a routine are taken into consideration when determining which routine to invoke, in order from left to right. Where there is not an exact match between the data type of the argument and the data type of the parameter specified, type precedence list are used to determine the closest match. the exact rules for routine determination for a given invocation are relatively complex [8].

3.3.7 Subtypes and supertypes

SQL3 allows UDTs to participate in a subtype/supertype hierarchy. A type can have more than one supertype (that is, multiple inheritance is supported), and more than one subtype. A subtype inherits all the attributes and behavior of its supertypes and it can define additional attributes and functions like any other UDT and it can override inherited function [8].

3.3.8 Persistent stored modules

A number of new statement types have been added in SQL3 to make the language computationally complete, so that object behavior (methods) can be stored and executed from within the database as SQL statements. Statements can be grouped together into a compound statement (block), with is own local variables. Some of the additional statements provided in SQL3 are:

· An assignment statement that allows the result of an SQL value expression to be assigned to a local variable, a column, or an attribute of a UDT.

· An IF…THEN…ELSE…END IF statement that allows conditional processing.

· A CASE statement that allows the selection of an execution path based on a set of alternatives.

· A set of statements that allows repeated execution of a block of SQL statements. The iterative statements are FOR,WHILE,and REPEAT.

· A CALL statement that allows procedures to be invoked and RETURN statement that allows an SQL value expression to be used as the return value from an SQL function [15].

3.3.9 Large Objects

A Large Object is a table field that holds a large a mount of data as a long text file or a graphics file. There are three different types of large object data types defined in SQL3:

· Binary Large Object (BLOB), a binary string that does not have a character set or collation association.

· Character Large Object (CLOB) and National Character Large Object (NCLOB), both character strings.

The SQL large object is slightly different from the original type of DLOB that appears in many current database systems. In such systems, the BLOB is non-interpreted byte stream, and the DBMS does not have any knowledge concerning the content of the BLOB or its internal structure. This prevents the DBMS from performing queries and operations on inherently rich and structured data types, such as images, video, word processing documents, or web pages. Generally, this requires that the entire BLOB be transferred across the network from the DBMS server to the client before any processing can be performed. In contrast, the SQL3 large object does allow some operations to be carried out in the DBMS server.

The standard string operators, which operate on characters strings and return character strings, also operate on character large object string, such as:

· The concatenation operator, (string1|| string2), which returns the character string formed by joining the character string operands in the specified order.

· The character substring function, SUBSTRING (string FROM startops FOR length), which returns a string extracted from a specified string from a start position for a given length.

· The fold function, UPPER (string) and LOWER (string), which convert all characters in a string to upper/lower case.

· The length function, CHAR+LENGTH (string), which return the length of the specified string.

· The position function, POSITION(string1 IN string2), which returns the start position of string1 within string2.

However, CLOB strings are not allowed to participate in most comparison operations, although they can participate in a LIKE predicate, and a comparison or quantified comparison predicate that uses the equal (=) or not equal(<>)operators.

3.4 Comparison of ORDBMS and OODBMS

It can be conclude the treatment of Object-Relational DBMS and Object-Oriented DBMS with a brief comparison of the two types of system. it can be assumed that future ORDBMSs will be compliant with SQL3 [8].

Table 3.1 Comparison Between ORDBMS and OODBMS.

	Feature
	ORDBMS
	OODBMS

	Encapsulation
	Supported through UDTs
	Supported and broken for queries

	Inheritance
	Supported (separate hierarchies for UDTs and tables)
	Supported

	Polymorphism
	Supported (UDF invocation based on the generic function)
	Supported as in an object oriented programming model language.

	Relationships
	Strong support with user-defined referential integrity constraints
	Supported (for example, using class libraries)

	Integrity constraints
	Strong support
	No support

	Recovery
	Strong support
	Supported but degree of support differs between products

	Advanced transaction models
	No support
	Supported but degree of support differs between products

	Security, integrity, and views
	Strong support
	Limited support

3.5 Summary
The concept of the ORDBMS is as a hybrid of the RDBMS and OODBMS. The object-oriented features proposed in SQL3 support type constructors for row types and reference types, user-defined types, user-defined procedures, functions and operators, and support for large objects Binary Large Objects (BLOBs) and Character Large Objects (CLOBs).

Data Complexity Extensibility

Relational DBMS

File Systems

Object-Relational DBMS

Object-Oriented DBMS

Search Capabilities multi-user Support

PAGE
40

